
Optimizing MPI Intra-node Communication
with New Task Model for Many-core Systems

Research and Development Group, Hitachi, Ltd.
Akio SHIMADA

LENS INTERNATIONAL WORKSHOP 2015

Background
• A large number of parallel processes can be invoked within a node on a many-
core system

• MPI and some PGAS language runtimes invokes multiple processes

• Fast Intra-node communication is required

• Many researches proposed a variety of intra-node communication schemes(e.g. KNEM, LiMIC)
since the appearance of multi-core processor and try to accelerate intra-node communication
on many-core systems (e.g. hybrid MPI)

2

Core� Core�

Core� Core�

Process� Process�

Process� Process�

Parallel*Processes�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Core� Core�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Process� Process�

Parallel*Processes�

Communica/on*on*Mul/1core*Node�
Communica/on*on*Many1core*Node�

Node�
Node�

Conventional Intra-node Communication Schemes

• Overheads for “crossing address space boundaries among processes”
are produced

• There are address space boundaries among processes

3

Shared Memory

• Double-copy via shared memory is
required for every communication

OS kernel assistance (KNEM, LiMIC, etc.)

• System call overhead is produced for every
communication

Sender

Send Buffer

Receiver

Receive
Buffer

Shared Memory

Intermediate
Buffer

memory
copy

memory
copy

Sender

Send Buffer

Receiver

Receive
Buffer

OS Kernel

memory copy

Proposal
• Partitioned Virtual Address Space（PVAS）

• A new task model for efficient parallel processing
on many-core systems

• PVAS make it possible for parallel processes
within the same node to run in the same address
space

• PVAS can remove overheads for crossing address
space boundary from intra-node communication

4

Address Space Layout

• PVAS partitions a single address space into multiple segments (PVAS partition) and assigns
them to parallel processes (PVAS tasks)

• Parallel processes uses the same page table for managing memory mapping informations

• PVAS task can use only its own PVAS partition as its local memory (cannot allocate memory
within a PVAS partition assigned to the other PVAS task)

• PVAS task is almost same as normal process except sharing the same address space with
other processes

5

Process 0

TEXT

DATA&BSS

HEAP

STACK

KERNEL

Process 1

TEXT

DATA&BSS

HEAP

STACK

KERNEL

PVAS
Partition 0

KERNEL

Ad
dr
es
s

Low

High

PVAS
Partition 1

TEXT

DATA&BSS

HEAP

STACK

TEXT

DATA&BSS

HEAP

STACK

PVAS Task 0

PVAS Task 1

Normal Task Model PVAS Task Model

･･
･

Figure 3: PVAS tasks share the same address space.

communication scheme to the eager communication and op-
timize the latency of expected small and eager messages.
The concept we put forward is based on the fact that in the
PVAS task model, a process has access to the memory of a
peer process as long as they are on the same node. Thus, a
send operation, can check the matching queue of the target
process, to either find the corresponding receive or insert the
current send. This approach completely removes the need
to go through a shared memory region for any type of intra-
node messages, small or large, as the sender can now directly
manipulate the matching queues of the target process.

3.1 PVAS Task Model
Partitioned Virtual Address Space (PVAS) [10] is a new

task model for conducting efficient intra-node communica-
tion on multi-core systems. PVAS task model enables pro-
cesses within a node to conduct single-copy communication
by running them in the same address space.
Figure 3 shows the schematic view of the address space

of both the normal task model and the PVAS task model.
In case of the normal task model, a process executes in
its own address space, which is assigned by the OS ker-
nel, and all memory segments (TEXT/BSS/HEAP/STACK
segments) of a process are mapped to its own, private, ad-
dress space. In contrast, the PVAS task model allows mul-
tiple processes to run in the same virtual address space. A
process on the PVAS task model is called a PVAS task in
order to distinguish it from a process of the normal task
model. Each PVAS task running in the same address space
is located within a partitioned region inside the address
space instead of having an entire address space. This par-
titioned region is called a PVAS partition. PVAS task can
use its own PVAS partition as its local address space. The
TEXT/BSS/HEAP/STACK segments of each PVAS task
are then mapped onto their own PVAS partition. PVAS
task can allocate memory within its own PVAS partition by
calling mmap(). To ensure the independence of each PVAS
task, the PVAS task model does not allow a PVAS task to
issue mmap() and munmap(), targeting the memory region of
the other PVAS tasks. PVAS tasks sharing the same address
space use the same page table tree for managing memory
mappings. Thus, PVAS tasks can access the memory of the
other PVAS tasks by simple load/store instructions, without

any requirement for prior setup. This allows for single-copy
communication between PVAS tasks.

The only major difference between a PVAS task and a nor-
mal process is that the former shares the same address space
with other processes. As with a normal process, a PVAS
task has its own TEXT/BSS/HEAP/STACK segments, file
descriptors, signal handlers, process ID, and so on. Thus,
an unmodified MPI program can be executed as a PVAS
task (However, it must be build as position independent ex-
ecutable). If the MPI processes within the same parallel job
are spawned as PVAS tasks within the same address space,
no memory boundary exists between these PVAS tasks and
message passing among them can be then conducted through
simple, one-sided, memory copies.

The merit of using PVAS task model is that single-copy
communication on the PVAS task model does not intro-
duce system call overhead on message passing. Single-copy
communication with OS kernel assistance like KNEM needs
to call a dedicated system call for every message passing.
Single-copy communication using memory mapping scheme
like XPMEM also needs to call a system call for mapping the
memory of the source process into the address space of the
destination process. In case that the same communication
buffer is not utilized repeatedly, this single-communication
introduces system call overhead for every message passing.
Another, yet unexplored, benefit of using the PVAS task
model is that it makes it easy to implement one-sided ea-
ger communications, as proposed in this paper. On our ea-
ger communication, the sender directly manipulates the re-
ceiver receive-queue without intermediary steps (except the
required protections to prevent simultaneous changes to the
matching queues). The only requirement is to know the
memory location of the peer receive queues, an exchange
operation that can be done.

3.2 Open MPI request matching
Unlike other MPI implementation the Open MPI [9] match-

ing strategy is decentralized based on multiple First-In First-
Out (FIFO) queues, one per communicator plus one per pro-
cess per communicator for a total of P + 1 where P is the
number of processes in the communicator. This allows for
extremely small critical regions in a threaded case, while
preserving the search time as only short structures have to
be searched upon a message arrival. The extraction of an al-
ready posted local receive or the insertion of an elements in
the matching queue behave atomically, either a local request
has been found or a pending fragment marker is inserted.

To simplify the description we will consider that the struc-
tures used for matching are FIFO ordered queues. Going a
little more in details, in order to ensure the FIFO matching
order imposed by the MPI standard, especially when deal-
ing with MPI ANY SOURCE, Open MPI uses the following
mechanisms:

- A receive sequence number. Each receive operation is
marked with an atomically increasing sequence num-
ber, which mirror the order in which the receives have
been posted by the local process.

- A ANY SRC queue. This per communicator-based
FIFO queue keep track of all the locally posted re-
quests where the source is not named. This FIFO is
ordered based on the receive sequence number.

- A per-process FIFO queue. These per-communicator

PVAS Feature
• All memory of the PVAS task is exposed to the
other PVAS tasks within the same node

• PVAS task can access the memory of the
other PVAS tasks by load/store instructions
(There are no address space boundaries
among them)

• A pair of PVAS tasks can exchange the data
without overheads for crossing an address
space boundary

6

Optimizing Open MPI by PVAS
• PVAS BTL component is implemented in the Byte
Transfer Layer (BTL) of the Open MPI

• SM BTL

• Supporting double-copy communication via shared memory

• Supporting single-copy communication with OS kernel
assistance (using KNEM)

• PVAS BTL（developed on the basis of the SM BTL）

• Copying the data from send buffer to receive buffer without
OS kernel assistance by using PVAS facility

7

PVAS BTL
8

MPI Process 0
(PVAS Task 0)

Send Buffer

MPI Process 1
(PVAS Task 1)

Receive
Buffer

① Sender posts the pointer 
to the send buffer

② Receiver copies the data 
 from the send buffer

• Invoking MPI process as PVAS task

• Copying the data from send buffer to receive buffer directly

• The overheads for crossing address space boundary is not produced
when transferring the data

• Single-copy communication (avoiding extra memory copy)

• OS kernel assistance is not necessary (avoiding system call overhead)

Evaluation Environment
• Intel Xeon Phi 5110P

• 1.083 GHZ, 60 cores (4HT)

• 32 KB L1 cache, 512 KB L2 cache

• 8 GB of main memory

• OS

• Intel MPSS linux 2.6.38.8 with PVAS facility

• MPI

• Open MPI 1.8 with PVAS BTL

Latency Evaluation
• Ping-pong communication latency was measured by running
Intel MPI Benchmarks

10

• PVAS BTL outperforms others regardless of the message size

• Latency of the SM BTL (KNEM) is higher than that of SM BTL
when message size is small because of the system call overhead

1"

10"

100"

1000"

10000"

100000"

1000000"

64
"
12
8"

25
6"

51
2" 1K

"
2K
"

4K
"

8K
"
16
K"

32
K"

64
K"
12
8K
"
25
6K
"
51
2K
"
1M
"
2M
"
4M
"
8M
"
16
M"

32
M"

La
nt
ey
c"
(u
se
c)
�

Message"Size"(Bytes)�

SM"

SM"(KNEM)"

PVAS"

NAS Parallel Benchmarks (NPB)
• Running NPB on a single node

• Number of Processes

• 128（MG, CG, FT, IS, LU）

• 225（SP, BT）

• Problem size

• CLASS A, B, C (A < B < C)

• PVAS BTL improves benchmark
performance by up to 28%

• SP（CLASS C）

11

!60$
!55$
!50$
!45$
!40$
!35$
!30$
!25$
!20$
!15$
!10$
!5$
0$
5$

10$
15$

MG$ CG$ FT$ IS$ LU$ SP$ BT$

Pe
rf
or
m
an
ce
$Im

pr
ov
em

en
t$(
%
)�

Benchmark$(CLASS$A)�

SM$(KNEM)$ PVAS$

!35$

!30$

!25$

!20$

!15$

!10$

!5$

0$

5$

10$

15$

20$

25$

MG$ CG$ FT$ IS$ LU$ SP$ BT$

Pe
rf
or
m
an
ce
$Im

pr
ov
em

en
t$(
%
)$

Bechmark$(CLASS$B)�

SM$(KNEM)$
PVAS$

!20$

!15$

!10$

!5$

0$

5$

10$

15$

20$

25$

30$

MG$ CG$ FT$ IS$ LU$ SP$ BT$

Pe
rf
or
m
an
ce
$Im

pr
ov
em

en
t$

Bemchmark$(CLASS$C)�

SM$(KNEM)$
PVAS$

N/A

MPI Process 0
(PVAS Task 0)

Send Buffer

MPI Process 1
(PVAS Task 1)

Receive Buffer

MPI Process 1
(PVAS Task 1)

Receive Buffer

MPI Process 0
(PVAS Task 0)

Optimizing Non-contiguous Data Transfer Using
Derived Data Types

• Sender and receiver exchange the pointer to the data type informations of them

• MPI process can access the MPI internal objects of the other MPI process
when using PVAS facility

• Sender and receiver copies the data from the send buffer to the receive buffer
consulting the data type informations of them

• Sender and receiver copy the data in parallel

12

① memory copy
by sender

Send Buffer
Shared Memory

SM BTL PVAS BTL

② memory copy by sender ③ memory copy
by receiver

② Sender posts the pointer to
 the intermediate buffer

②’ memory copy by receiver

① Sender and receiver exchange the pointer to 
 the data type informations of them

Latency Evaluation Using DDTBench(1/2)
• DDTBench [Timo et al., EurMPI’12] mimics the commutation pattern of MPI applications by using
derived data types

• MPI processes send and receive the non-contiguous data in WRF, MILC, NPB, LAMMPS,
SPECFEM3D

13

0"

200"

400"

600"

800"

1000"

1200"

43
K"

55
K"

63
K"

75
K"

90
K"

WRF_y_sa�

SM"

PVAS"

0"

1000"

2000"

3000"

4000"

5000"

6000"

63
K"

10
2K

"

17
3K

"

WRF_x_sa�

SM"
PVAS"

0"

200"

400"

600"

800"

1000"

1200"

43
K"

55
K"

63
K"

75
K"

90
K"

WRF_y_vec�

SM"

PVAS"

0"

1000"

2000"

3000"

4000"

5000"

6000"

63
K"

10
2K

"

17
3K

"
WRF_x_vec�

SM"

PVAS"

0"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

2K
"

32
K"

13
1K

"

52
4K

"

NAS_MG_x�

SM"
PVAS"

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

4K
"

65
K"

26
2K

"

1M
"

NAS_MG_y�

SM"
PVAS"

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

4K
"

65
K"

26
2K

"

1M
"

NAS_MG_z�

SM"

PVAS"

0"

100"

200"

300"

400"

500"

600"

700"

800"

12
K"

24
K"

49
K"

98
K"

MILC_su3_zd�

SM"

PVAS"

X-axis: Data Size, Y-axis: Latency (usec)

Latency Evaluation Using DDTBench(2/2)
14

0"

50"

100"

150"

200"

250"

300"

350"

400"

0.
48
K"

1.
3K

"

2.
5K

"

4K
"

6.
4K

"

16
K"

40
K"

NAS_LU_x�

SM"

PVAS"

0"

100"

200"

300"

400"

500"

600"

700"

800"

0.
48
K"

1.
3K

"

2.
5K

"

4K
"

6.
4K

"

16
K"

40
K"

NAS_LU_y�

SM"

PVAS"

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

9000"

10000"

10
6K

"

14
3K

"

19
5K

"

LAMMPS_full�

SM"
PVAS"

0"

100"

200"

300"

400"

500"

600"

700"

5.
4K

"

6.
9K

"

11
K"

LAMMPS_atomic�

SM"

PVAS"

0"

200000"

400000"

600000"

800000"

1000000"

1200000"

1400000"

52
4K

"

2M
"

4.
7M

"

8.
3M

"

18
.8
M
"

FFT�

SM"

PVAS"

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

67
K"

74
K"

76
K"

91
K"

SPECFEM3D_mt�

SM"
PVAS"

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

1.
9K

"

3.
5K

"

7.
5K

"

12
K"

SPECFEM3D_oc�

SM"

PVAS"

0"

5000"

10000"

15000"

20000"

25000"

26
K"

55
K"

10
6K

"

17
7K

"

SPECFEM3D_cm�

SM"

PVAS"

X-axis: Data Size, Y-axis: Latency (usec)

Latency Analysis
• Performance improvement can be larger when data size is large

• PVAS implementation can accelerate data copy between
processes

• Time for data copy does not impact when message size is
small

• Performance improvement can be smaller when transferring
data from complex data type buffer to complex data type
buffer

• Access to the sparsely located data incurs a lot of cache
misses during data copy

15

FFT2D_datatype
• 2D Fast Fourie Transform
code

• Using Derived Data Types
for matrix transpose

• Different vector types on
send/recv side

• PVAS BTL improves
benchmark performance by
up to 21%

16

fft2d_datatype results (NP=240)

Related Work
• SMARTMAP [Ron et al., SC’08]

• SMARTMAP enables process to map the whole memory of the
other process into its address space

• It is similar to the PVAS, but the implementation is different

• SMARTMAP accelerates MPI Intra-node communication for
transferring contiguous data

• User-mod Memory Registration

• UMR is a function of Mellanox IB, which makes it possible to
transfer non-contiguous data through one RDMA operation

• UMR accelerates MPI inter-node communication using derived
data types [Mingzhe et al., IEEE Cluster’15]

17

Summary
• We introduced PVAS task model

• A new task model for efficient parallel processing on many-core
systems

• PVAS removes overheads for crossing address space boundary
from intra-node communication by running the parallel
processes within the same address space

• We optimized MPI intra-node communication by using PVAS facility

• We optimized contiguous and non-contiguous data transfers in
Open MPI

• PVAS implementation outperforms SM implementation

18

