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Background

A large number of parallel processes can be invoked within a node on a many-
core system

MPI and some PGAS language runtimes invokes multiple processes
Fast Intra-node communication is required

Many researches proposed a variety of intra-node communication schemes(e.g. KNEM, LIMIC)
since the appearance of multi-core processor and try to accelerate intra-node communication
on many-core systems (e.g. hybrid MPI)
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Conventional Intra-node Communication Schemes

Overheads for “crossing address space boundaries among processes”
are produced

There are address space boundaries among processes

Shared Memory OS kernel assistance (KNEM. LIMIC. etc.)
Double-copy via shared memory is - System call overhead is produced for every
required for every communication communication
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Proposal

. Partitioned Virtual Address Space (PVAS)

- A new task model for efficient parallel processing
On many-core systems

- PVAS make it possible for parallel processes
within the same node to run in the same address

space

- PVAS can remove overheads for crossing address
space boundary from intra-node communication
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PVAS partitions a single address space into multiple segments (PVAS partition) and assigns
them to parallel processes (PVAS tasks)

Parallel processes uses the same page table for managing memory mapping informations

PVAS task can use only its own PVAS partition as its local memory (cannot allocate memory
within a PVAS partition assigned to the other PVAS task)

PVAS task is almost same as normal process except sharing the same address space with
other processes



PVAS Feature

- All memory of the PVAS task is exposed to the
other PVAS tasks within the same node

- PVAS task can access the memory of the
other PVAS tasks by load/store instructions
(There are no address space boundaries

among them)

- A pair of PVAS tasks can exchange the data
without overheads for crossing an address
space boundary



Optimizing Open MPI by PVAS

- PVAS BTL component is implemented in the Byte
Transfer Layer (BTL) of the Open MPI

- SM BTL

- Supporting double-copy communication via shared memory

. Supporting single-copy communication with OS kernel
assistance (using KNEM)

. PVAS BTL (developed on the basis of the SM BTL)

- Copying the data from send buffer to receive buffer without
OS kernel assistance by using PVAS facility



PVAS BTL

- Invoking MPI process as PVAS task

- Copying the data from send buffer to receive buffer directly

- The overheads for crossing address space boundary is not produced
when transferring the data

- Single-copy communication (avoiding extra memory copy)

- OS kernel assistance is not necessary (avoiding system call overhead)
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Evaluation Environment

. Intel Xeon Phi 5110P
. 1.083 GHZ, 60 cores (4HT)

- 32 KB L1 cache, 512 KB L2 cache

- 8 GB of main memory
0N

- Intel MPSS linux 2.6.38.8 with PVAS facility
- MPI

- Open MPI 1.8 with PVAS BTL
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Latency Evaluation

- Ping-pong communication latency was measured by running
Intel MPlI Benchmarks
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- PVAS BTL outperforms others regardless of the message size

- Latency of the SM BTL (KNEM) is higher than that of SM BTL
when message size is small because of the system call overhead
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- Running NPB on a single node

Number of Processes
128 (MG, CG, FT, IS, LU)
225 (SP, BT)

Problem size

CLASS A, B,C(A<B< ()

- PVAS BTL improves benchmark
performance by up to 28%
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Derived Data Types

Optimizing Non-contiguous Data Transfer Using

- Sender and receiver exchange the pointer to the data type informations of them

MPI process can access the MPI internal objects of the other MPI process
when using PVAS facility

- Sender and receiver copies the data from the send buffer to the receive buffer
consulting the data type informations of them

Sender and receiver copy the data in parallel
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Latency Evaluation Using DDTBench(1/2)

DDTBench [Timo et al., EurMPI'1 2] mimics the commutation pattern of MPI applications by using

derived data types

MPI processes send and receive the non-contiguous data in WRF, MILC, NPB, LAMMPS,
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Latency Evaluation Using DDTBench(2/2
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Latency Analysis

- Performance improvement can be larger when data size is large

- PVAS implementation can accelerate data copy between
processes

- Time for data copy does not impact when message size is
small

- Performance improvement can be smaller when transferring
data from complex data type buffer to complex data type

buffer

- Access to the sparsely located data incurs a lot of cache
misses during data copy



FFT2D_ datatype

. 2D Fast Fourie Transform
code

- Using Derived Data Types
for matrix transpose

- Different vector types on
send/recv side

- PVAS BTL improves
benchmark performance by
up to 21%

&

| msm

M PVAS

4800 x 4800 9600 x 9600

[
o

&

[y
o

Performance Improvement (%)
(%]

.

o

T
4800 x 4800 9600 x 9600
Matrix Size

fft2d_datatype results (NP=240)



17

Related Work

- SMARTMAP [Ron et al., SC'08]

- SMARTMAP enables process to map the whole memory of the
other process into its address space

- It is similar to the PVAS, but the implementation is different

- SMARTMAP accelerates MPI Intra-node communication for
transferring contiguous data

- User-mod Memory Registration

- UMR is a function of Mellanox IB, which makes it possible to
transfer non-contiguous data through one RDMA operation

- UMR accelerates MPI inter-node communication using derived
data types [Mingzhe et al., IEEE Cluster’15]
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Summary

- We Iintroduced PVAS task model

- A new task model for efficient parallel processing on many-core
systems

PVAS removes overheads for crossing address space boundary
from intra-node communication by running the parallel
processes within the same address space

- We optimized MPI intra-node communication by using PVAS facility

- We optimized contiguous and non-contiguous data transfers in
Open MPI

PVAS implementation outperforms SM implementation



