# Optimizing MPI Intra-node Communication with New Task Model for Many-core Systems

Research and Development Group, Hitachi, Ltd.
Akio SHIMADA

### Background

- · A large number of parallel processes can be invoked within a node on a manycore system
  - · MPI and some PGAS language runtimes invokes multiple processes
- · Fast Intra-node communication is required
  - Many researches proposed a variety of intra-node communication schemes(e.g. KNEM, LiMIC) since the appearance of multi-core processor and try to accelerate intra-node communication on many-core systems (e.g. hybrid MPI)



Communication on Multi-core Node



Communication on Many-core Node

#### Conventional Intra-node Communication Schemes

- Overheads for "crossing address space boundaries among processes" are produced
  - · There are address space boundaries among processes

#### **Shared Memory**

 Double-copy via shared memory is required for every communication

#### OS kernel assistance (KNEM, LiMIC, etc.)

 System call overhead is produced for every communication





# Proposal

- · Partitioned Virtual Address Space (PVAS)
  - A new task model for efficient parallel processing on many-core systems
  - PVAS make it possible for parallel processes within the same node to run in the same address space
  - PVAS can remove overheads for crossing address space boundary from intra-node communication

## Address Space Layout



- · PVAS partitions a single address space into multiple segments (PVAS partition) and assigns them to parallel processes (PVAS tasks)
- · Parallel processes uses the same page table for managing memory mapping informations
- PVAS task can use only its own PVAS partition as its local memory (cannot allocate memory within a PVAS partition assigned to the other PVAS task)
- PVAS task is almost same as normal process except sharing the same address space with other processes

# PVAS Feature

- All memory of the PVAS task is exposed to the other PVAS tasks within the same node
  - PVAS task can access the memory of the other PVAS tasks by load/store instructions (There are no address space boundaries among them)
  - A pair of PVAS tasks can exchange the data without overheads for crossing an address space boundary

## Optimizing Open MPI by PVAS

- PVAS BTL component is implemented in the Byte Transfer Layer (BTL) of the Open MPI
  - · SM BTL
    - Supporting double-copy communication via shared memory
    - Supporting single-copy communication with OS kernel assistance (using KNEM)
  - PVAS BTL (developed on the basis of the SM BTL)
    - Copying the data from send buffer to receive buffer without
       OS kernel assistance by using PVAS facility

#### **PVAS BTL**

- · Invoking MPI process as PVAS task
- Copying the data from send buffer to receive buffer directly
- The overheads for crossing address space boundary is not produced when transferring the data
  - · Single-copy communication (avoiding extra memory copy)
  - OS kernel assistance is not necessary (avoiding system call overhead)



## Evaluation Environment

- · Intel Xeon Phi 5110P
  - · 1.083 GHZ, 60 cores (4HT)
  - · 32 KB L1 cache, 512 KB L2 cache
  - · 8 GB of main memory
- · OS
  - Intel MPSS linux 2.6.38.8 with PVAS facility
- · MPI
  - Open MPI 1.8 with PVAS BTL

## Latency Evaluation

 Ping-pong communication latency was measured by running Intel MPI Benchmarks



- · PVAS BTL outperforms others regardless of the message size
- · Latency of the SM BTL (KNEM) is higher than that of SM BTL when message size is small because of the system call overhead

### NAS Parallel Benchmarks (NPB)

- · Running NPB on a single node
  - Number of Processes
    - · 128 (MG, CG, FT, IS, LU)
    - · 225 (SP, BT)
  - · Problem size
    - · CLASS A, B, C (A < B < C)
- PVAS BTL improves benchmark performance by up to 28%
  - · SP (CLASS C)







#### Optimizing Non-contiguous Data Transfer Using Derived Data Types

- · Sender and receiver exchange the pointer to the data type informations of them
  - MPI process can access the MPI internal objects of the other MPI process when using PVAS facility
- Sender and receiver copies the data from the send buffer to the receive buffer consulting the data type informations of them
  - Sender and receiver copy the data in parallel



#### Latency Evaluation Using DDTBench(1/2)

- · DDTBench [Timo et al., EurMPl'12] mimics the commutation pattern of MPl applications by using derived data types
  - MPI processes send and receive the non-contiguous data in WRF, MILC, NPB, LAMMPS, SPECFEM3D



### Latency Evaluation Using DDTBench(2/2)



X-axis: Data Size, Y-axis: Latency (usec)

# Latency Analysis

- · Performance improvement can be larger when data size is large
  - PVAS implementation can accelerate data copy between processes
  - Time for data copy does not impact when message size is small
- Performance improvement can be smaller when transferring data from complex data type buffer to complex data type buffer
  - Access to the sparsely located data incurs a lot of cache misses during data copy

# FFT2D\_datatype

- 2D Fast Fourie Transform code
  - Using Derived Data Types for matrix transpose
  - Different vector types on send/recv side
- PVAS BTL improves
   benchmark performance by up to 21%





fft2d\_datatype results (NP=240)

### Related Work

- · SMARTMAP [Ron et al., SC'08]
  - SMARTMAP enables process to map the whole memory of the other process into its address space
  - · It is similar to the PVAS, but the implementation is different
  - SMARTMAP accelerates MPI Intra-node communication for transferring contiguous data
- · User-mod Memory Registration
  - · UMR is a function of Mellanox IB, which makes it possible to transfer non-contiguous data through one RDMA operation
  - UMR accelerates MPI inter-node communication using derived data types [Mingzhe et al., IEEE Cluster'15]

# Summary

- We introduced PVAS task model
  - · A new task model for efficient parallel processing on many-core systems
  - PVAS removes overheads for crossing address space boundary from intra-node communication by running the parallel processes within the same address space
- · We optimized MPI intra-node communication by using PVAS facility
  - We optimized contiguous and non-contiguous data transfers in Open MPI
  - PVAS implementation outperforms SM implementation