LENS INTERNATIONAL WORKSHOP 2015

Optimizing MPI Intra-node Communication
with New Task Model for Many-core Systems

Research and Development Group, Hitachi, Ltd.
Akio SHIMADA

Background

A large number of parallel processes can be invoked within a node on a many-
core system

MPI and some PGAS language runtimes invokes multiple processes
Fast Intra-node communication is required

Many researches proposed a variety of intra-node communication schemes(e.g. KNEM, LIMIC)
since the appearance of multi-core processor and try to accelerate intra-node communication
on many-core systems (e.g. hybrid MPI)

Parallel Processes

Process <= Process Process €= Process <1=» Process 4L, Process
A A A A A 4
1 1 1 1 1 1
v \ v v £ 7 v
Process €= Process Process €=t Process <= Process <=p Process
4 4 4 4 A 4
L L L L L L
v v v v v v
Process <= Process Process €==>Process €= Process <=t Process
A A 4 A A A
| | | | | |
Parallel Processes v M M M M M
Process =1 Process ™ Process 1> Process =1 Process <= Process
Process <=r» Process
A A
| |
v \4
Process *=/> Process Core Core Core Core Core Core
Core Core Core Core Core Core
Core Core
Core Core Core Core Core Core
Core Core
Core Core Core Core Core Core
Node
Node

Communication on Multi-core Node .
Communication on Many-core Node

Conventional Intra-node Communication Schemes

Overheads for “crossing address space boundaries among processes”
are produced

There are address space boundaries among processes

Shared Memory OS kernel assistance (KNEM. LIMIC. etc.)
Double-copy via shared memory is - System call overhead is produced for every
required for every communication communication

Sender Receiver Sender Receiver
Send Buffer Rocene Send Buffer Rocene
\ Pal \ 4

copy Intermediate copy

Buffer

Shared Memory OS Kernel

Proposal

. Partitioned Virtual Address Space (PVAS)

- A new task model for efficient parallel processing
On many-core systems

- PVAS make it possible for parallel processes
within the same node to run in the same address

space

- PVAS can remove overheads for crossing address
space boundary from intra-node communication

Process O

Process 1

TEXT

TEXT

DATA&BSS

DATA&BSS

HEAP

HEAP

STACK

STACK

KERNEL

KERNEL

Low

Address

High

Address Space Layout

PVAS Task O

PVAS
Partition O

TEXT

DATA&BSS

PVAS
Partition 1

HEAP

STACK

PVAS Task 1

TEXT

DATA&BSS

KERNEL

HEAP

STACK

Normal Task Model PVAS Task Model

PVAS partitions a single address space into multiple segments (PVAS partition) and assigns
them to parallel processes (PVAS tasks)

Parallel processes uses the same page table for managing memory mapping informations

PVAS task can use only its own PVAS partition as its local memory (cannot allocate memory
within a PVAS partition assigned to the other PVAS task)

PVAS task is almost same as normal process except sharing the same address space with
other processes

PVAS Feature

- All memory of the PVAS task is exposed to the
other PVAS tasks within the same node

- PVAS task can access the memory of the
other PVAS tasks by load/store instructions
(There are no address space boundaries

among them)

- A pair of PVAS tasks can exchange the data
without overheads for crossing an address
space boundary

Optimizing Open MPI by PVAS

- PVAS BTL component is implemented in the Byte
Transfer Layer (BTL) of the Open MPI

- SM BTL

- Supporting double-copy communication via shared memory

. Supporting single-copy communication with OS kernel
assistance (using KNEM)

. PVAS BTL (developed on the basis of the SM BTL)

- Copying the data from send buffer to receive buffer without
OS kernel assistance by using PVAS facility

PVAS BTL

- Invoking MPI process as PVAS task

- Copying the data from send buffer to receive buffer directly

- The overheads for crossing address space boundary is not produced
when transferring the data

- Single-copy communication (avoiding extra memory copy)

- OS kernel assistance is not necessary (avoiding system call overhead)

MPI Process O
(PVAS Task 0O)

Send Buffer

(D Sender posts the pointer
to the send buffer

/ \

@ Receiver copies the data
from the send buffer

MPI Process 1
(PVAS Task 1)

Receive
Buffer

Evaluation Environment

. Intel Xeon Phi 5110P
. 1.083 GHZ, 60 cores (4HT)

- 32 KB L1 cache, 512 KB L2 cache

- 8 GB of main memory
0N

- Intel MPSS linux 2.6.38.8 with PVAS facility
- MPI

- Open MPI 1.8 with PVAS BTL

10

Latency Evaluation

- Ping-pong communication latency was measured by running
Intel MPlI Benchmarks

1000000
—+—SM

SM (KNEM)
—PVAS

100000 -

10000 -

1000

Lanteyc (usec)

100

10 ==

% b o A
SR NN O R @*&%’{;S:Q%r&\qﬁ\@\%@x@@?\

Message Size (Bytes)

- PVAS BTL outperforms others regardless of the message size

- Latency of the SM BTL (KNEM) is higher than that of SM BTL
when message size is small because of the system call overhead

11

- Running NPB on a single node

Number of Processes
128 (MG, CG, FT, IS, LU)
225 (SP, BT)

Problem size

CLASS A, B,C(A<B< ()

- PVAS BTL improves benchmark
performance by up to 28%

- SP (CLASS C)

Performance Improvement (%) Performance Improvement (%)

Performance Improvement
.

10
5
0

-5

-10
-15

N
o

-25
-30

-35
-40
-45
-50
-55
-60

NAS Parallel Benchmqus (NPB)

ESM (KNEM) Z PVAS

MG CG FT 1S Ly sp BT
Benchmark (CLASS A)

7

B SM (KNEM)
PVAS
MG CG FT IS LU SP BT

Bechmark (CLASS B)

%
e

ESM (KNEM)
7 PVAS

MG CG FT IS LU sp BT
Bemchmark (CLASS C)

12

Derived Data Types

Optimizing Non-contiguous Data Transfer Using

- Sender and receiver exchange the pointer to the data type informations of them

MPI process can access the MPI internal objects of the other MPI process
when using PVAS facility

- Sender and receiver copies the data from the send buffer to the receive buffer
consulting the data type informations of them

Sender and receiver copy the data in parallel

MPI Process O
(PVAS Task 0)

-
e
~l

-
e
~l

Send Buffer

@ Sender posts the pointer to
the intermediate buffer

T

MPI Process 1
(PVAS Task 1)

@ memory copy @ memory copy
by sender by receiver
....... /

-
.......
-
_________ \

Shared Memory

Receive Buffer

(D Sender and receiver exchange the pointer to
the data type informations of them

SM BTL

MPI Process O
(PVAS Task 0)

/\

(@ memory copy by sender

@ memory copy by receiver

MPI Process 1
(PVAS Task 1)

Send Buffer

Receive Buffer

PVAS BTL

13

6000
5000
4000
3000
2000

1000

Latency Evaluation Using DDTBench(1/2)

DDTBench [Timo et al., EurMPI'1 2] mimics the commutation pattern of MPI applications by using

derived data types

MPI processes send and receive the non-contiguous data in WRF, MILC, NPB, LAMMPS,

SPECFEM3D

WRF_x_vec

—¢SM

~©-PVAS

63K
102K
173K

MILC_su3_zd

12K
24K
49K
98K

1200

1000

800

600

400

200

70000

60000

50000

40000

30000

20000

10000

WRF_y_vec

—>-SM .
“©-PVAS /

b4 b4 4 b4 x
2 5 8 2 =
NAS_MG_x
—>SM

~ ~ ~
~ I -
] o0

R

524K

6000

5000

4000

3000

2000

1000

7000

6000

5000

4000

3000

2000

1000

X-axis: Data Size, Y-axis: Latency (usec)

WRF_x_sa

—SM
~©-PVAS

63K
102K
173K

NAS_MG_y

~ x =
< i =

1200

1000

800

600

400

200

7000

6000

5000

4000

3000

2000

1000

WRF_y_sa

—>SM

~©-PVAS

~ 4 b4 4 4
@2 b ®a 0 =3
NAS_MG_z

im

~ ~
< n
©

262K

14

400

350

300

250

200

150

100

50

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Latency Evaluation Using DDTBench(2/2

NAS_LU_x

—>SM

-©-PVAS

0.48K T
1.3K
2.5K
4K

LAMMPS_full

16K

40K

—>~-SM

~S-PVAS

106K
143K

195K

800

600

500

400

300

200

100

700

600 -

500

400

300

200

100

NAS_LU_y

—~SM /

-©-PVAS /

/ /

¥ % 9z ¥ % ¥ %
g - ~ © — <
LAMMPS_atomic
—2>-SM
| -e-pVAS

o

&

5.4K
6.9K
11K

1400000

1200000 -

1000000

800000

600000

400000

200000

3500

3000

2500

2000

1500

1000

500

FFT SPECFEM3D_mt
3500
—S¢SM SSM
-5-PVAS / 0T e-pyas
//73' 2500 /
// 2000 ?
// 1500
1000 -
/ .)
0
2 2 2 2 g g 3 8 =
[Ta} < 0 ﬁ
SPECFEM3D_oc SPECFEM3D_cm
25000
—-SM ~eSM
x
—-5-PVAS / Jo000 |- “Z"PVAS y
/ P 15000
/
// 10000
5000 :
e'—”—’,,——¥7 |
0 ‘ :

1.9
3.5K
7.5K

12K

X-axis: Data Size, Y-axis: Latency (usec)

26K
55K
106K
177K

15

Latency Analysis

- Performance improvement can be larger when data size is large

- PVAS implementation can accelerate data copy between
processes

- Time for data copy does not impact when message size is
small

- Performance improvement can be smaller when transferring
data from complex data type buffer to complex data type

buffer

- Access to the sparsely located data incurs a lot of cache
misses during data copy

FFT2D_ datatype

. 2D Fast Fourie Transform
code

- Using Derived Data Types
for matrix transpose

- Different vector types on
send/recv side

- PVAS BTL improves
benchmark performance by
up to 21%

&

| msm

M PVAS

4800 x 4800 9600 x 9600

[
o

&

[y
o

Performance Improvement (%)
(%]

.

o

T
4800 x 4800 9600 x 9600
Matrix Size

fft2d_datatype results (NP=240)

17

Related Work

- SMARTMAP [Ron et al., SC'08]

- SMARTMAP enables process to map the whole memory of the
other process into its address space

- It is similar to the PVAS, but the implementation is different

- SMARTMAP accelerates MPI Intra-node communication for
transferring contiguous data

- User-mod Memory Registration

- UMR is a function of Mellanox IB, which makes it possible to
transfer non-contiguous data through one RDMA operation

- UMR accelerates MPI inter-node communication using derived
data types [Mingzhe et al., IEEE Cluster’15]

18

Summary

- We Iintroduced PVAS task model

- A new task model for efficient parallel processing on many-core
systems

PVAS removes overheads for crossing address space boundary
from intra-node communication by running the parallel
processes within the same address space

- We optimized MPI intra-node communication by using PVAS facility

- We optimized contiguous and non-contiguous data transfers in
Open MPI

PVAS implementation outperforms SM implementation

